

29

International Journal of Electronics & Informatics ORIGINAL ARTICLE

Tracking Extrema in Dynamic Environment using Multi-Swarm

Cellular PSO with Local Search

Somayeh Nabizadeh1,*, Alireza Rezvanian2, Mohammad Reza Meybodi3

ISSN: 2186-0114

http://www.IJEI.org

ARTICLE HISTORY

Received: 14th January, 2012
Revised: 15th August, 20121
Accepted: 16 August, 2012

Published online:

17 August , 2012

Vol.1, No.1, 2012

Abstract

Many real-world phenomena can be modelled as dynamic optimization
problems. In such cases, the environment problem changes dynamically

and therefore, conventional methods are not capable of dealing with such
problems. In this paper, a novel multi-swarm cellular particle swarm
optimization algorithm is proposed by clustering and local search. In the
proposed algorithm, the search space is partitioned into cells, while the
particles identify changes in the search space and form clusters to create
sub-swarms. Then a local search is applied to improve the solutions in
the each cell. Simulation results for static standard benchmarks and
dynamic environments show the superiority of the proposed method over
other alternative approaches.

 Keywords: Dynamic Environment, Tracking Extrema, Multi Swarm
 Cellular PSO, Local Search

 Center for Natural Sciences & Engineering Research (CNSER), IJEI.

 All rights reserved.

I. INTRODUCTION1

In many real-world problems, which are

dynamic in nature, fitness function changes

over time. In such cases, due to dynamic

changes in the search space, conventional

evolutionary algorithms are not applicable. To
be more specific, an algorithm can tackle

such problems if it is capable of identifying

changes in the environment and finding new

optimum solutions [1]. In this regard,

different methods such as maintenance

diversity, increased diversity, memory-based
and multi-swarm methods are proposed for

solving dynamic optimization problems [2]. In

this research, the main focus is on a hybrid

AUTHORS INFO

1* Somayeh Nabizadeh
e-mail: s_nabizadeh@qiau.ac.ir
Qazvin branch, Islamic Azad University,
Qazvin, Iran

2 Alireza Rezvanian
e-mail: a.rezvanian@aut.ac.ir
Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran

3 Mohammad Reza Meybodi
e-mail: mmeybodi@aut.ac.ir
Amirkabir University of Technology (Tehran
Polytechnic), Tehran, Iran

*Corresponding author Somayeh Nabizadeh
e-mail: s_nabizadeh@qiau.ac.ir
Tel: +98-21-64545120

method of maintenance diversity and multi-

swarm. Evolutionary algorithms such as
genetic algorithm [3], differential evolution [4],

artificial immune system [5,6], and ant colony

optimization make these methods applicable

for solving dynamic optimization problems by

appropriate mechanisms.

Particle swarm optimization (PSO)
algorithm has gained a significant attraction

due to its simplicity and efficiency [8]. In

addition, different versions of PSO are applied

in dynamic environments. In the multi-swarm

algorithm proposed by [9], parents maintain
diversity and identify promising regions while

offspring searches local areas to find local

optima. In recent years, because of their

satisfying results, multi-swarm algorithms, in

which the particles are clustered into search

groups, have got significant attention. Partly,
focus of the recent works has been

concentrated on methods and types of

particles grouping. Recently, a new promising

method based on cellular automata is
proposed by Hashemi et al. for partitioning

the solution space into cells [10,11]. In this
paper, two mechanisms are proposed to

maintain the diversity in cellular PSO. In the

first one, clustering is used to form sub-

swarms in each cell instead of searching the

whole cell in order to speed up the search,
whereas the second mechanism, local search

is applied in each cell to improve the quality

of solutions.

http://www.ijei.org/

Tracking Extrema in Dynamic Environment

30

The rest of this paper is organized as

follows: in section 2, the cellular PSO is

introduced briefly. The proposed method is
discussed in section 3. Section 4, provides

the simulation results for static standard

benchmark and dynamic environment.

Finally, section 5 concludes the paper.

II. CELLULAR PSO

The original PSO, introduced in 1990s, is

based on swarm behaviour. In PSO, each
solution is considered as a particle which

represents a single bird in a swarm. Initially,

the particles are created and positioned

randomly within the search space.

Afterwards, each particle is updated
iteratively according to the best observed

value for personal and global fitness to reach

optimal fitness [12].

In Cellular PSO, the search space is

partitioned and a cellular automaton (CA) is

fitted to the partitioned space to maintain
diversity and provide an appropriate search

on the space. Each cell in the CA searches

and controls its corresponding region

according to some predefined rules. Each

particle is assigned to a cell based on its
position in the space with search procedure

being performed separately for each cell and

its neighbours by using the PSO. This search

method provides enough diversity as well as

the ability to follow multiple optimum

solutions. In addition, neighbouring cells
communicate information about their best

known solutions which results in a more

appropriate cooperation between

neighbouring cells for sharing their

experiences. This in turn increases efficiency
of the algorithm [11].

During each iteration of the algorithm,

velocity, and position of the particles are

updated according to the equations below:

i i 1 1 i i

2 2 ik

v (t 1) wv (t) c r (pBest p

BestM

(t))

emc r (l p (t))

 (1)

 i i ip t 1 p t v t i 1,...,m (2)

Where vi is the velocity of the ith particle

and pi is its position. r1 and r2 are uniformly

distributed random variables in (0,1), while c1

and c2 are the learning parameters which are
usually considered as equal. w represents the

inertia weight which may be constant or
variable. pBesti denotes the best known

solution for the ith particle and lBestMemk is

the best known solution of kth cell neighbour

to which particle i belongs.

One major drawback of cellular PSO is that

the number of cells increases exponentially as

dimension of the problem and/or the number
of the partitions increase. Moreover, it is not

possible to change the number of cells during

runtime. To overcome the problem of fixed

number of cells, clustering is used to

dynamically create groups in each cell

whenever needed. By application of the
clustering technique, it would be unnecessary

to increase the number of cells in order to

obtain a more precise search. Therefore,

exponential increase in the number of cells is

prevented. Furthermore, a local search
procedure is applied for solution

improvement.

III. PROPOSED ALGORITHM

In cellular PSO, a CA is used for solution

space partitioning. CA is known as a

mathematical model of systems with several

simple components which have local

interactions. Using the local rules on CA, an

ordered structure may be obtained from a
completely random state. In CA, two well-

known neighborhood structures of Von

Neumann and Moore are utilized as Figure 1.

 (a) (b)

Fig. 1. 2-D Neighbourhood structure in CA; (a)

Moore; (b) Von Neumann

In the proposed method, after partitioning

the space into cells, clustering is generally
applied to form groups of particles on which

local search is applied during the cellular

PSO procedure. In this algorithm each cell

contains some groups, which are considered

as multi-swarm having Moore neighbourhood

structure.
Velocity of particles in each swam are

updated as follows:

k 1 1 k k

NBest

2 2 i k k

v (t 1) a r (pBest p)

a r (c p) wv (t)

(3)

Where CiBbest gives the best position in the

neighbor for cell i. The velocity of swarm is

S. Nabizadeh et al

31

defined by (4):

k k kp (t 1) p (t) v (t 1) (4)

Moreover, the velocities of particles are

updated in each case by equation (5).

Best

k 1 1 k k 2 2 i k

k

v (t 1) a r (pBest p) a r (c p)

wv (t)

(5)

In the proposed algorithm, after each

change a local search is performed for each

swarm which increases the efficiency of the

algorithm,. The local search is applied to the

CBest of each cell. The overall process includes

definition of a magnitude and a direction of

movement for each dimension to determine

magnitude and direction of the search in that

dimension. Moving in each dimension

according to the specified magnitude and

direction, fitness is calculated for the

obtained position and the current position is

substituted by the obtained one if improved.

Otherwise, the movement direction is

reversed in that dimension and a new

direction is followed there. An update is

implemented when the fitness is improved

performing the latter action, and if not,

magnitude of movement is decreased and the

process begins for the next dimension. The

whole procedure is performed for all

dimensions until further improvement

becomes impossible in all dimensions for a

given movement and the minimum magnitude

of movement is reached in all dimensions.

According to what discussed above, the

proposed algorithm can be considered as the

following steps:

1. Initialize the cells and their regions

2. Distribute the particles normally among

cells in each region

3. Repeat the following steps until the

termination criteria is met

3.1. Evaluate particles

3.2. If the change detected in the

environment by memory particle

3.2.1. Re-initialize the parameters

3.2.2. Perform cellular movement of

swarms

3.2.3. Re-evaluate the particles

3.3. Clustering the particles into each

cell

3.4. Update velocity and position of the

particles

3.5. Evaluate groups and cells

3.6. Perform local search in each group

3.7. Replace the particles in each inactive

group

4. End

In the algorithm above, when particles in a

group converge to a point, the group becomes

inactive and its particles are used as free

particles for finding better solutions in other

groups of the cell or within the neighbor cells.

Fig. 2 depicts the running of the algorithm

and clustering of the particles in a 2-D search

space.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(a)

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(b)

Fig. 2. (a) Initialization and search space

partitioning; (b) Position of the particles in the
search space after some iterations.

IV. SIMULATION RESULTS

A. Static Environments

In the first experiment, the algorithm is

performed on static standard benchmark

unimodal and multimodal functions

including, Sphere, Rastrigin, Griewank and

Tracking Extrema in Dynamic Environment

32

Rosenbrock are defined in table I [12-14].

Table I. Standard static functions for the

experiments

Range Function Name

[-100,100]D

n

i

ixxf
1

2

1)(
Sphere

[-.5.12,5.12]D

n
2

2 i i

i 1

f (x) (x 10cos(2 x) 10)

Griewank

[-600,600]D
nn

2 i
3 i

i 1 i 1

x1f (x) x cos 1
4000 i

Rastrigin

[-5, 10]D
n 1

2

4 i 1 i

i 1

f (x) 100 x x 1

Rosenbrock

The experiments are accomplished

assuming different dimensions of 20, 30 and

50 and population size of 3 to 5 particles in

each cell by using Von Neumann

neighborhood structure and 3-cell

partitioning. The results for 30 independent

runs of the algorithm for 1000 iterations are

provided in table II, table III and table IV. The

inertia weight is considered as a random

variable with values between 0.4 and 0.9. A

comparison of the proposed algorithm, as

CPSOL, with other versions of PSO, standard

PSO as SPSO [16], Fuzzy PSO as FPSO [17],

Linear PSO as LPSO [18] and Robust PSO as

RPSO [19] is reported.

Table II. Comparison of MCPSOL with other
versions of PSO on the Sphere function

Method
 Dim

 20 30 50

SPSO
Best 5.3606 14.6781 52.1710

Mean 9.7219 20.8323 65.1315

LPSO
Best 2.6039 9.5509 30.2971

Mean 4.2247 11.5349 34.0405

FPSO
Best 6.6142 10.0933 29.7984

Mean 8.9822 13.5249 32.5106

RPSO
Best 1.4816 9.5509 12.7986

Mean 1.9959 11.5349 16.5475

CPSOL
Best 0.9351 2.0064 8.5612

Mean 1.9617 3.7861 14.3182

Table III. Comparison of MCPSOL with other
versions of PSO on the Rastrigin function

Method
 Dim

 20 30 50

SPSO
Best 67.3994 133.3642 367.5225

Mean 110.6389 153.4576 404.0451

LPSO
Best 137.4023 147.3715 351.7914

Mean 142.6308 155.2974 369.1274

FPSO
Best 102.2786 146.6628 301.9003

Mean 115.1138 157.0243 320.5474

RPSO
Best 64.7160 131.3496 296.5793

Mean 73.2037 144.1901 316.9913

CPSOL
Best 19.4109 43.8256 65.3681

Mean 31.0693 179.2361 227.3218

Table IV. Comparison of MCPSOL with other
versions of PSO on the Griewank function

Method
 Dim

 20 30 50

SPSO
Best 117.7599 318.8507 503.0944

Mean 174.0772 339.5614 702.5057

LPSO
Best 159.9319 339.6826 715.4197

Mean 216.4355 395.9068 837.5857

FPSO
Best 159.6489 342.8425 643.2599

Mean 198.4451 405.9346 827.6388

RPSO
Best 178.3643 342.0737 664.6935

Mean 209.1941 426.9451 780.3784

CPSOL
Best 1.3182 3.4048 19.0432

Mean 2.6793 7.5687 24.3255

Table V. Comparison of MCPSOL with other
versions of PSO on the Rosenbrock function

Method
 Dim

 20 30 50

SPSO
Best 122.5061 24105.353 139662.26

Mean 106904.17 107219.21 318569.65

LPSO
Best 1222.7753 6874.5738 206034.62

Mean 105257.12 71610.811 355794.89

FPSO
Best 805.5753 19582.926 75437.949

Mean 109189.95 100901.54 271848.10

RPSO
Best 629.0278 3530.0328 6531.0425

Mean 10229.24 78676.722 158941.32

CPSOL
Best 180.0802 284.4018 4843239

Mean 496.9682 845.4121 1042.18

S. Nabizadeh et al

33

B. Dynamic Environments

In order to evaluate the proposed algorithm

in dynamic environments, several

experiments performed on two famous

dynamic environments as moving parabolic

function and moving peaks benchmarks.

 B.1. Experiments on moving parabolic function

In the first experiment, order to evaluate

the proposed method in dynamic

environment, dynamic moving parabolic

function generator, developed by Angeline [20]

is employed, which is illustrated in figure 3. A

moving parabolic benchmark changes by k

using the following equation in this dynamic

environment,:

 2 2 2, , f x y z x y z (6)

Where, according to the movements one

may consider the equation:

3

2

1

() ()

 i

i

f x x k
(7)

The movements are linear, circular or

Gaussian with a magnitude of and

frequency of f satisfying the following

equations.

 k k (8)

2
sin

25

2
cos

25

t
k k oven

k

t
k k odd

 (9)

 0,1 k k N (10)

Where t in equation (9) denotes the

cumulative number of changes in the

function.

Different types of changes are used in the

experiments with d=30, f=200, 1000 and

=0.01, 0.1. The dynamic moving parabolic is

applied to Sphere function in the interval [-

50, 50].

In order to compare the proposed method

with other algorithms, the offline error (OE),

provided by the equation (12) is used [15].

1

()
1

(

T

best

t

tOE f p
T

 (11)

Where, f is the fitness function, T

represents the maximum number of

iterations and pBest(t) is the best known

global solution found by the algorithm in

iteration t.

(a)

(b)

(c)

Fig. 3. Example dynamics; (a) Linear dynamic; (b)
Circular dynamic; (c) Gaussian dynamic [20].

In this experiment, the proposed algorithm

as CPSOL is compared with RPSO [21],

mQSO 10(5+1q) [22], AmQSO [23] and CPSO

[11] by offline error. For each one of the three

different movements the results of OE are

provided in Table VI, VII, and VIII.

Table VI. Offline error and standard deviation in
dynamic environment for Linear movement

F AmQSO mQSO RPSO CPSO CPSOL

200
0.01 133.48±2.56 99.36±2.84 20.57±0.10 33.78±1.08 33.24±2.03

0.1 189.63±2.20 100.12±3.11 22.85±0.13 33.59±0.91 33.16±1.91

1000
0.01 27.17±0.48 20.04±0.63 0.81±0.01 9.18±0.19 8.95±0.57

0.1 90.56±0.78 20.11±0.64 0.78±0.01 10.70±0.22 9.87±0.39

Table VII. Offline error and standard deviation in
dynamic environment for Circular movement

Tracking Extrema in Dynamic Environment

34

F AmQSO mQSO RPSO CPSO CPSOL

200
0.01 134.65±2.52 95.73±2.64 25.10±0.11 32.94±1.12 33.35±1.23

0.1 132.51±2.49 98.07±3.08 24.80±0.10 33.86±0.89 33.63±1.14

1000
0.01 26.92±0.49 19.69±0.65 0.82±0.01 7.45±0.17 7.37±0.34

0.1 27.89±0.45 19.48±0.67 0.81±0.01 9.27±0.19 8.94±0.32

Table VIII. Offline error and standard deviation in
dynamic environment for Gaussian movement

F AmQSO mQSO RPSO CPSO CPSOL

200

0.01 133.65±2.40 98.26±3.09 25.10±0.11 33.41±1.06 33.06±1.19

0.1 134.60±2.60 99.71±3.20 24.90±0.13 33.56±1.14 33.29±1.08

1000

0.01 27.15±0.46 19.94±0.62 0.82±0.01 7.03±0.18 6.85±1.11

0.1 27.61±0.51 19.83±0.66 0.82±0.01 8.87±0.17 8.62±1.24

The proposed method is superior to

original Cellular PSO for all three types of

movements while RPSO has the best

performance among all the existing

algorithms and provides more satisfying

results. Generally, the proposed algorithm

demonstrates acceptable performance in

comparison with the original PSO.

 B.2. Experiments on moving peaks benchmark

In the second experiment, In order to

evaluate the proposed algorithm in dynamic

environments, several experiments are

performed on Moving Peaks Benchmark

(MPB). In the MPB, there are some peaks in a

multi-dimensional space, where the height,

width, and position of each peak alter when

the environment changes. Unless stated

otherwise, the parameters of MPB are set to

the values listed in table 1 [4, 11].

Table IX. Default settings of MPB

Parameter Value

number of peaks m 10

Frequency of change f every 5000 evaluations

height severity 7.0

width severity 1.0

peak shape Cone

shift length s 1.0

number of dimensions D 5

cone height range H [30.0, 70.0]

cone width range W [1, 12]

cone standard height I 50.0

Search space range A [0, 100]

For the proposed method the inertia weight

is considered as a random variable between

0.4 and 0.9. The acceleration coefficient is set

to 1.496180, the number of particles is 40;

the type of neighborhood structure is Moore

and the size of partition is 5.

In these experiments, proposed algorithm

so called multi swarm cellular PSO based on

local search as CPSOCL is compared with

Hibernating Multi Swarm Optimization as

(HmSO) [24], Learning Automata based

Immune Algorithm as (LAIA) [5], Cellular

Differential Evolution as (CDE) [4], Cellular

Particle Swarm Optimization as (CPSO) [11],

by offline error. For each experiment, the

average offline error and standard deviation of

30 time-independent runs is addressed. The

results of several dynamics are also listed in

the table X, to XIII.

Table X. Offline Error ± Standard Error for F=500

M HmSO LAIA CDE CPSO CPSOL

1 8.53±0.49 7.34±0.32 8.20±0.19 7.81±0.51 8.29±0.55

5 7.40±0.31 7.05±0.39 6.06±0.05 6.59±0.31 6.29±0.21

10 7.56±0.27 6.91±0.32 5.93±0.04 7.35±0.22 5.45±0.17

20 7.81±0.20 6.95±0.38 5.60±0.03 7.79±0.27 5.47±0.19

30 8.33±0.18 6.92±0.33 5.56±0.03 7.88±0.23 5.59±0.12

40 8.45±0.18 6.84±0.31 5.47±0.02 7.83±0.21 5.63±0.16

50 8.83±0.17 6.43±0.29 5.47±0.02 8.12±0.22 5.74±0.11

100 8.85±0.16 6.58±0.26 5.29±0.02 7.90±0.24 5.45±0.07

200 8.85±0.16 6.41±0.27 5.07±0.02 7.82±0.20 5.79±0.10

S. Nabizadeh et al

35

Table XI. Offline Error ± Standard Error for
F=1000

M HmSO LAIA CDE CPSO CPSOL

1 4.46±0.26 4.96±0.32 4.98±0.35 5.86±0.42 4.74±0.32

5 4.27±0.08 4.01±0.31 3.96±0.04 5.26±0.26 3.95±0.21

10 4.61±0.07 3.94±0.29 3.98±0.03 5.75±0.23 3.20±0.20

20 4.66±0.12 3.72±0.29 4.53±0.02 5.74±0.19 3.52±0.17

30 4.83±0.09 4.03±0.31 4.77±0.02 5.84±0.16 3.96±0.12

40 4.82±0.09 3.97±0.32 4.87±0.02 5.84±0.17 4.21±0.17

50 4.96±0.03 4.22±0.31 4.87±0.02 5.84±0.14. 3.98±0.11.

100 5.14±0.08 4.19±0.32 4.85±0.02 5.73±0.11 4.13±0.12

200 5.25±0.08 4.38±0.31 4.46±0.01 5.48±0.11 4.15±0.01

Table XII. Offline Error ± Standard Error for
F=2500

M HmSO LAIA CDE CPSO CPSOL

1 1.75±0.10 2.48±0.15 2.38±0.78 3.78±0.25 2.31±0.21

5 1.92±0.11 2.51±0.19 2.12±0.02 2.91±0.14 2.01±0.13

10 2.39±0.16 2.82±0.27 2.42±0.02 3.18±0.16 1.56±0.15

20 2.46±0.09 3.16±0.36 3.05±0.04 3.65±0.13 2.41±0.13

30 2.57±0.05 3.14±0.33 3.29±0.03 3.90±0.11 2.78±0.10

40 2.56±0.06 3.02±0.31 3.43±0.03 4.20±0.13 2.90±0.12

50 2.65±0.05 3.05±0.31 3.44±0.02 4.08±0.11 3.18±0.09

100 2.72±0.04 3.14±0.35 3.36±0.01 4.23±0.09 3.22±0.07

200 2.81±0.04 3.08±0.32 3.13±0.01 4.09±0.10 3.09±0.12

Table XIII. Offline Error ± Standard Error for
F=5000

M HmSO LAIA CDE CPSO CPSOL

1 0.87±0.05 1.94±0.19 1.53±0.07 2.36±0.14 1.02±0.14

5 1.18±0.04 2.09±0.18 1.50±0.04 1.94±0.16 0.99±0.15

10 1.42±0.04 2.14±0.15 1.64±0.03 2.09±0.13 1.75±0.10

20 1.50±0.06 2.97±0.21 2.64±0.05 2.94±0.13 1.93±0.11

30 1.65±0.04 2.98±0.23 2.62±0.05 3.04±0.09 2.28±0.10

40 1.65±0.05 3.07±0.29 2.76±0.05 3.16±0.11 2.62±0.09

50 1.66±0.02 2.93±0.27 2.75±0.05 3.19±0.10 2.74±0.10

100 1.68±0.03 3.06±0.24 2.73±0.03 3.24±0.09 2.84±0.12

200 1.71±0.02 2.95±0.23 2.61±0.02 3.15±0.08 2.69±0.08

According to the results of the table X to

XIII, the proposed algorithm is relatively

advantageous over alternative algorithms.

V. CONCLUSIONS

In this paper, an extension of cellular PSO

algorithm augmented by clustering and local

search in cellular environment is proposed.

The inspiration for this research was to

perform a more precise search without

increasing the number of partitions. This is

obtained by defining and using groups in

each cell. The simulation results on both

static and dynamic environments reveal an

improvement as compared with its original

version.

REFERENCES

[1] C. Cruz, J. R. González, D. A. Pelta,

“Optimization in dynamic environments: a survey

on problems, methods and measures,” Intl. Journal

of Soft Computing, Vol. 157, No. 7, 2011, pp. 1427-

1448.

[2] D. Ayvaz, H. R. Topcuoglu, F. Gurgen,

“Performance evaluation of evolutionary heuristics

in dynamic environments,” Intl. Journal of Applied

Intelligence, Vol. 37, No. 1, 2011, pp. 130–144.

[3] H. Wang, S. Yang, W. Ip, D. Wang, “Adaptive

Primal–Dual Genetic Algorithms in Dynamic

Environments,” Intl. Journal of IEEE Transactions

on Systems, Man, and Cybernetics, Part B:

Cybernetics, Vol. 39, No. 6, 2009, pp. 1348–1361.

[4] V. Noroozi, A. Hashemi, M. R. Meybodi,

“CellularDE: a cellular based differential evolution

for dynamic optimization problems,” in Adaptive

and Natural Computing Algorithms, Vol. 6593, A.

Dobnikar, Ed. Springer-Verlag Berlin Heidelberg

2010, pp. 340-349.

[5] A. Rezvanian, M. R. Meybodi, “An adaptive

mutation operator for artificial immune network

using learning automata in dynamic

environments,” in Proc. of 2010 Second World

Congress on Nature and Biologically Inspired

Tracking Extrema in Dynamic Environment

36

Computing (NaBIC), 2010, Kitakyshu, Japan, pp.

479-483.

[6] A. Rezvanian, M. R. Meybodi, “Tracking

Extrema in Dynamic Environments Using a

Learning Automata-Based Immune Algorithm,” in

Grid and Distributed Computing, Control and

Automation, Vol. 121, T. H. Kim, Ed. Springer-

Verlag Berlin Heidelberg 2010, pp. 216-225.

[7] M. Mavrovouniotis, S. Yang, “Ant colony

optimization with immigrants schemes in dynamic

environments,” in Parallel Problem Solving from

Nature–PPSN, vol. 6239, R. Schaefer, Ed. Springer-

Verlag Berlin Heidelberg 2010, pp. 371-380.

[8] S. Nabizadeh, K. Faez, S. Tavassoli, A.

Rezvanian, “A novel method for multi-level image

thresholding using particle swarm Optimization

algorithms,” in Proc. 2010 2nd Int. Conf. on

Computer Engineering and Technology (ICCET),

2010, Vol. 4, pp. 271-275.

[9] R. I. Lung, D. Dumitrescu, “A collaborative

model for tracking optima in dynamic

environments,” in Proc. of IEEE Intl. Conf. on

Evolutionary Computation (CEC), 2007, pp. 564-

567.

[10] A. B. Hashemi, M. R. Meybodi, “A multi-role

cellular PSO for dynamic environments,” in Proc.

14th Int. Conf. Of CSI, 2009, pp. 412-417.

[11] A. B. Hashemi, M. R. Meybodi, “Cellular PSO:

A PSO for dynamic environments,” in Advances in

Computation and Intelligence, vol. 5821, Z. Cai, Ed.

Springer-Verlag Berlin Heidelberg 2009, pp. 422-

433.

[12] A. B. Hashemi, M. R. Meybodi, “A note on the

learning automata based algorithms for adaptive

parameter selection in PSO,” Intl. Journal of

Applied Soft Computing, Vol. 11, No. 1, 2011, pp.

689-705.

[13] A. Rezvanian, M. R. Meybodi, “LACAIS:

Learning Automata based Cooperative Artificial

Immune System for Function Optimization,” in

Contemporary Computing, vol. 94, S. Ranka, Ed.

Springer-Verlag Berlin Heidelberg 2010, pp. 64-75.

[14] S. Nabizadeh, M. R. Meybodi, A. Rezvanian,

“Inertia Weight Tuning for PSO using FLC and LA-

AIS”, in Proc. 10th Iranian Conf. on Fuzzy Systems

(IFS), Tehran, Iran, 2010, pp. 1-5.

[15] S. Nabizadeh, A. Rezvanian, M. R. Meybodi, “A

Multi-Swarm Cellular PSO based on Clonal

Selection Algorithm in Dynamic Environments,” in

Proc. of IEEE Intl. Conf. on Informatics, Electronics

& Vision (ICIEV), 2012, Dhaka, Bangladesh, pp. 1-

5.

[16] J. Kennedy, R. Eberhart, “Particle swarm

optimization,” in Proc. IEEE Int. Conf. on Neural

Networks (ICNN), 1995, Perth, USA, pp. 1942-

1948.

[17] Y. Shi, R. C. Eberhart, “Fuzzy adaptive particle

swarm optimization,” in Proc. of IEEE Intl. Conf. on

Evolutionary Computation (CEC), 2001, Seoul,

Korea, pp. 101-106.

[18] Y. Shi, R. C. Eberhart, “Empirical study of

particle swarm optimization,” in Proc. of IEEE Intl.

Conf. on Evolutionary Computation (CEC), 1999,

Washington, USA, pp. 1945-1950.

[19] Q. Luo, D. Yi, “A co-evolving framework for

robust particle swarm optimization,” Intl. Journal

of Applied Mathematics and Computation, vol. 199,

2008, pp. 611-622.

[20] P. Angeline, “Tracking extrema in dynamic

environments,” in Evolutionary Programming VI,

Vol. 1213, 1997, pp. 335–345.

[21] X. Hu, R. C. Eberhart, “Adaptive particle

swarm optimization: detection and response to

dynamic systems,” in Proc. of IEEE Intl. Conf. on

Evolutionary Computation (CEC), 2002, Honolulu,

USA, pp. 1666-1670.

[22] T. Blackwell, J. Branke, “Multiswarms,

exclusion, and anti-convergence in dynamic

S. Nabizadeh et al

37

environments,” Intl. Journal of IEEE Transactions

on Evolutionary Computation, Vol. 10, No. 4, 2006,

pp. 459-472.

[23] T. Blackwell, J. Branke, X. Li, “Particle swarms

for dynamic optimization problems,” in Swarm

Intelligence, 2008, pp. 193-217.

[24] M. Kamosi, A. B. Hashemi, M. R. Meybodi, “A

hibernating multi-swarm optimization algorithm

for dynamic environments,” in Proc. of 2010

Second World Congress on Nature and Biologically

Inspired Computing (NaBIC), 2010, Kitakyshu,

Japan, pp. 363-369.

