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Abstract 

Many real-world phenomena can be modelled as dynamic optimization 
problems. In such cases, the environment problem changes dynamically 

and therefore, conventional methods are not capable of dealing with such 
problems. In this paper, a novel multi-swarm cellular particle swarm 
optimization algorithm is proposed by clustering and local search. In the 
proposed algorithm, the search space is partitioned into cells, while the 
particles identify changes in the search space and form clusters to create 
sub-swarms. Then a local search is applied to improve the solutions in 
the each cell. Simulation results for static standard benchmarks and 
dynamic environments show the superiority of the proposed method over 
other alternative approaches. 

   Keywords: Dynamic Environment, Tracking Extrema, Multi Swarm     
      Cellular PSO, Local Search 

 

 Center for Natural Sciences & Engineering Research (CNSER), IJEI.  

      All rights reserved. 

 

I. INTRODUCTION1 

In many real-world problems, which are 

dynamic in nature, fitness function changes 

over time. In such cases, due to dynamic 

changes in the search space, conventional 

evolutionary algorithms are not applicable. To 
be more specific, an algorithm can tackle 

such problems if it is capable of identifying 

changes in the environment and finding new 

optimum solutions [1]. In this regard, 

different methods such as maintenance 

diversity, increased diversity, memory-based 
and multi-swarm methods are proposed for 

solving dynamic optimization problems [2]. In 

this research, the main focus is on a hybrid 
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method of maintenance diversity and multi-

swarm. Evolutionary algorithms such as 
genetic algorithm [3], differential evolution [4], 

artificial immune system [5,6], and ant colony 

optimization make these methods applicable 

for solving dynamic optimization problems by 

appropriate mechanisms. 

Particle swarm optimization (PSO) 
algorithm has gained a significant attraction 

due to its simplicity and efficiency [8]. In 

addition, different versions of PSO are applied 

in dynamic environments. In the multi-swarm 

algorithm proposed by [9], parents maintain 
diversity and identify promising regions while 

offspring searches local areas to find local 

optima. In recent years, because of their 

satisfying results, multi-swarm algorithms, in 

which the particles are clustered into search 

groups, have got significant attention. Partly, 
focus of the recent works has been 

concentrated on methods and types of 

particles grouping. Recently, a new promising 

method based on cellular automata is 
proposed by Hashemi et al. for partitioning 

the solution space into cells [10,11]. In this 
paper, two mechanisms are proposed to 

maintain the diversity in cellular PSO. In the 

first one, clustering is used to form sub-

swarms in each cell instead of searching the 

whole cell in order to speed up the search, 
whereas the second mechanism, local search 

is applied in each cell to improve the quality 

of solutions.  

http://www.ijei.org/
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The rest of this paper is organized as 

follows: in section 2, the cellular PSO is 

introduced briefly. The proposed method is 
discussed in section 3. Section 4, provides 

the simulation results for static standard 

benchmark and dynamic environment. 

Finally, section 5 concludes the paper. 

II. CELLULAR PSO 

The original PSO, introduced in 1990s, is 

based on swarm behaviour. In PSO, each 
solution is considered as a particle which 

represents a single bird in a swarm. Initially, 

the particles are created and positioned 

randomly within the search space. 

Afterwards, each particle is updated 
iteratively according to the best observed 

value for personal and global fitness to reach 

optimal fitness [12].  

In Cellular PSO, the search space is 

partitioned and a cellular automaton (CA) is 

fitted to the partitioned space to maintain 
diversity and provide an appropriate search 

on the space. Each cell in the CA searches 

and controls its corresponding region 

according to some predefined rules. Each 

particle is assigned to a cell based on its 
position in the space with search procedure 

being performed separately for each cell and 

its neighbours by using the PSO. This search 

method provides enough diversity as well as 

the ability to follow multiple optimum 

solutions. In addition, neighbouring cells 
communicate information about their best 

known solutions which results in a more 

appropriate cooperation between 

neighbouring cells for sharing their 

experiences. This in turn increases efficiency 
of the algorithm [11].  

During each iteration of the algorithm, 

velocity, and position of the particles are 

updated according to the equations below: 

 

i i 1 1 i i

2 2 ik

v (t 1) wv (t) c r (pBest p

BestM

(t))

emc r (l p (t))

   

 
 (1) 

 

     i i ip t 1 p t v t i 1,...,m     (2) 

Where vi is the velocity of the ith particle 

and pi is its position. r1 and r2 are uniformly 

distributed random variables in (0,1), while c1 

and c2 are the learning parameters which are 
usually considered as equal. w represents the 

inertia weight which may be constant or 
variable. pBesti denotes the best known 

solution for the ith particle and lBestMemk is 

the best known solution of kth cell neighbour 

to which particle i belongs. 

One major drawback of cellular PSO is that 

the number of cells increases exponentially as 

dimension of the problem and/or the number 
of the partitions increase. Moreover, it is not 

possible to change the number of cells during 

runtime. To overcome the problem of fixed 

number of cells, clustering is used to 

dynamically create groups in each cell 

whenever needed. By application of the 
clustering technique, it would be unnecessary 

to increase the number of cells in order to 

obtain a more precise search. Therefore, 

exponential increase in the number of cells is 

prevented. Furthermore, a local search 
procedure is applied for solution 

improvement. 

III. PROPOSED ALGORITHM 

In cellular PSO, a CA is used for solution 

space partitioning. CA is known as a 

mathematical model of systems with several 

simple components which have local 

interactions. Using the local rules on CA, an 

ordered structure may be obtained from a 
completely random state. In CA, two well-

known neighborhood structures of Von 

Neumann and Moore are utilized as Figure 1. 

 

 

   

   

   

 

   

   

   

 
                            (a)                                                   (b) 

Fig. 1. 2-D Neighbourhood structure in CA; (a) 

Moore; (b) Von Neumann 

 

In the proposed method, after partitioning 

the space into cells, clustering is generally 
applied to form groups of particles on which 

local search is applied during the cellular 

PSO procedure. In this algorithm each cell 

contains some groups, which are considered 

as multi-swarm having Moore neighbourhood 

structure.  
Velocity of particles in each swam are 

updated as follows: 

 

k 1 1 k k

NBest

2 2 i k k

v (t 1) a r (pBest p )

a r (c p ) wv (t)

  

  
 

(3) 

 

Where CiBbest gives the best position in the 

neighbor for cell i. The velocity of swarm is 
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defined by (4): 

 

k k kp (t 1) p (t) v (t 1)     (4) 

 

Moreover, the velocities of particles are 

updated in each case by equation (5). 

 
Best

k 1 1 k k 2 2 i k

k

v (t 1) a r (pBest p ) a r (c p )

wv (t)

    


 

(5) 

 

In the proposed algorithm, after each 

change a local search is performed for each 

swarm which increases the efficiency of the 

algorithm,. The local search is applied to the 

CBest of each cell. The overall process includes 

definition of a magnitude and a direction of 

movement for each dimension to determine 

magnitude and direction of the search in that 

dimension. Moving in each dimension 

according to the specified magnitude and 

direction, fitness is calculated for the 

obtained position and the current position is 

substituted by the obtained one if improved. 

Otherwise, the movement direction is 

reversed in that dimension and a new 

direction is followed there. An update is 

implemented when the fitness is improved 

performing the latter action, and if not, 

magnitude of movement is decreased and the 

process begins for the next dimension. The 

whole procedure is performed for all 

dimensions until further improvement 

becomes impossible in all dimensions for a 

given movement and the minimum magnitude 

of movement is reached in all dimensions. 

According to what discussed above, the 

proposed algorithm can be considered as the 

following steps: 

 

1. Initialize the cells and their regions 

2. Distribute the particles normally among 

cells in each region 

3. Repeat the following steps until the 

termination criteria is met 

3.1.  Evaluate particles 

3.2.  If the change detected in the 

environment by memory particle 

3.2.1. Re-initialize the parameters 

3.2.2. Perform cellular movement of 

swarms 

3.2.3. Re-evaluate the particles 

3.3.  Clustering the particles into each 

cell 

3.4.  Update velocity and position of the 

particles 

3.5.  Evaluate groups and cells 

3.6.  Perform local search in each group 

3.7.  Replace the particles in each inactive 

group 

4. End 

In the algorithm above, when particles in a 

group converge to a point, the group becomes 

inactive and its particles are used as free 

particles for finding better solutions in other 

groups of the cell or within the neighbor cells. 

Fig. 2 depicts the running of the algorithm 

and clustering of the particles in a 2-D search 

space.  
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Fig. 2. (a) Initialization and search space 

partitioning; (b) Position of the particles in the 
search space after some iterations.  

 

IV. SIMULATION RESULTS 

A. Static Environments 

In the first experiment, the algorithm is 

performed on static standard benchmark 

unimodal and multimodal functions 

including, Sphere, Rastrigin, Griewank and 
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Rosenbrock are defined in table I [12-14]. 
 

Table I. Standard static functions for the 

experiments 

Range Function Name 

[-100,100]D 



n
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Rosenbrock 

 

The experiments are accomplished 

assuming different dimensions of 20, 30 and 

50 and population size of 3 to 5 particles in 

each cell by using Von Neumann 

neighborhood structure and 3-cell 

partitioning. The results for 30 independent 

runs of the algorithm for 1000 iterations are 

provided in table II, table III and table IV. The 

inertia weight is considered as a random 

variable with values between 0.4 and 0.9. A 

comparison of the proposed algorithm, as 

CPSOL, with other versions of PSO, standard 

PSO as SPSO [16], Fuzzy PSO as FPSO [17], 

Linear PSO as LPSO [18] and Robust PSO as 

RPSO [19] is reported. 

 
 

Table II. Comparison of MCPSOL with other 
versions of PSO on the Sphere function 

Method 
 Dim 

 20 30 50 

SPSO 
Best 5.3606 14.6781 52.1710 

Mean 9.7219 20.8323 65.1315 

LPSO 
Best 2.6039 9.5509 30.2971 

Mean 4.2247 11.5349 34.0405 

FPSO 
Best 6.6142 10.0933 29.7984 

Mean 8.9822 13.5249 32.5106 

RPSO 
Best 1.4816 9.5509 12.7986 

Mean 1.9959 11.5349 16.5475 

CPSOL 
Best 0.9351 2.0064 8.5612 

Mean 1.9617 3.7861 14.3182 

 

 

 

 

Table III. Comparison of MCPSOL with other 
versions of PSO on the Rastrigin function 

Method 
 Dim 

 20 30 50 

SPSO 
Best 67.3994 133.3642 367.5225 

Mean 110.6389 153.4576 404.0451 

LPSO 
Best 137.4023 147.3715 351.7914 

Mean 142.6308 155.2974 369.1274 

FPSO 
Best 102.2786 146.6628 301.9003 

Mean 115.1138 157.0243 320.5474 

RPSO 
Best 64.7160 131.3496 296.5793 

Mean 73.2037 144.1901 316.9913 

CPSOL 
Best 19.4109 43.8256 65.3681 

Mean 31.0693 179.2361 227.3218 
 

Table IV. Comparison of MCPSOL with other 
versions of PSO on the Griewank function 

Method 
 Dim 

 20 30 50 

SPSO 
Best 117.7599 318.8507 503.0944 

Mean 174.0772 339.5614 702.5057 

LPSO 
Best 159.9319 339.6826 715.4197 

Mean 216.4355 395.9068 837.5857 

FPSO 
Best 159.6489 342.8425 643.2599 

Mean 198.4451 405.9346 827.6388 

RPSO 
Best 178.3643 342.0737 664.6935 

Mean 209.1941 426.9451 780.3784 

CPSOL 
Best 1.3182 3.4048 19.0432 

Mean 2.6793 7.5687 24.3255 

 

Table V. Comparison of MCPSOL with other 
versions of PSO on the Rosenbrock function 

Method 
 Dim 

 20 30 50 

SPSO 
Best 122.5061 24105.353 139662.26 

Mean 106904.17 107219.21 318569.65 

LPSO 
Best 1222.7753 6874.5738 206034.62 

Mean 105257.12 71610.811 355794.89 

FPSO 
Best 805.5753 19582.926 75437.949 

Mean 109189.95 100901.54 271848.10 

RPSO 
Best 629.0278 3530.0328 6531.0425 

Mean 10229.24 78676.722 158941.32 

CPSOL 
Best 180.0802 284.4018 4843239 

Mean 496.9682 845.4121 1042.18 
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B. Dynamic Environments 

In order to evaluate the proposed algorithm 

in dynamic environments, several 

experiments performed on two famous 

dynamic environments as moving parabolic 

function and moving peaks benchmarks. 

 

   B.1. Experiments on moving parabolic function 

In the first experiment, order to evaluate 

the proposed method in dynamic 

environment, dynamic moving parabolic 

function generator, developed by Angeline [20] 

is employed, which is illustrated in figure 3. A 

moving parabolic benchmark changes by k 

using the following equation in this dynamic 

environment,: 

 

  2 2 2, ,   f x y z x y z  (6) 

 

Where, according to the movements one 

may consider the equation: 

 
3

2

1

( ) ( )


  i

i

f x x k  
(7) 

 

The movements are linear, circular or 

Gaussian with a magnitude of  and 

frequency of f satisfying the following 

equations. 
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 0,1   k k N  (10) 

 

Where t in equation (9) denotes the 

cumulative number of changes in the 

function. 

Different types of changes are used in the 

experiments with d=30, f=200, 1000 and 

=0.01, 0.1. The dynamic moving parabolic is 

applied to Sphere function in the interval [-

50, 50]. 

In order to compare the proposed method 

with other algorithms, the offline error (OE), 

provided by the equation (12) is used [15]. 

 

 
1

( )
1

(


 
T

best

t

tOE f p
T

 (11) 

 

Where, f is the fitness function, T 

represents the maximum number of 

iterations and pBest(t) is the best known 

global solution found by the algorithm in 

iteration t. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3. Example dynamics; (a) Linear dynamic; (b) 
Circular dynamic; (c) Gaussian dynamic [20]. 

 

In this experiment, the proposed algorithm 

as CPSOL is compared with RPSO [21], 

mQSO 10(5+1q) [22], AmQSO [23] and CPSO 

[11] by offline error. For each one of the three 

different movements the results of OE are 

provided in Table VI, VII, and VIII. 
 

Table VI. Offline error and standard deviation in 
dynamic environment for Linear movement 

F  AmQSO mQSO RPSO CPSO CPSOL 

200 
0.01 133.48±2.56 99.36±2.84 20.57±0.10 33.78±1.08 33.24±2.03 

0.1 189.63±2.20 100.12±3.11 22.85±0.13 33.59±0.91 33.16±1.91 

1000 
0.01 27.17±0.48 20.04±0.63 0.81±0.01 9.18±0.19 8.95±0.57 

0.1 90.56±0.78 20.11±0.64 0.78±0.01 10.70±0.22 9.87±0.39 

 

Table VII. Offline error and standard deviation in 
dynamic environment for Circular movement 
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F  AmQSO mQSO RPSO CPSO CPSOL 

200 
0.01 134.65±2.52 95.73±2.64 25.10±0.11 32.94±1.12 33.35±1.23 

0.1 132.51±2.49 98.07±3.08 24.80±0.10 33.86±0.89 33.63±1.14 

1000 
0.01 26.92±0.49 19.69±0.65 0.82±0.01 7.45±0.17 7.37±0.34 

0.1 27.89±0.45 19.48±0.67 0.81±0.01 9.27±0.19 8.94±0.32 

 

Table VIII. Offline error and standard deviation in 
dynamic environment for Gaussian movement 

F  AmQSO mQSO RPSO CPSO CPSOL 

200 

0.01 133.65±2.40 98.26±3.09 25.10±0.11 33.41±1.06 33.06±1.19 

0.1 134.60±2.60 99.71±3.20 24.90±0.13 33.56±1.14 33.29±1.08 

1000 

0.01 27.15±0.46 19.94±0.62 0.82±0.01 7.03±0.18 6.85±1.11 

0.1 27.61±0.51 19.83±0.66 0.82±0.01 8.87±0.17 8.62±1.24 

 

The proposed method is superior to 

original Cellular PSO for all three types of 

movements while RPSO has the best 

performance among all the existing 

algorithms and provides more satisfying 

results. Generally, the proposed algorithm 

demonstrates acceptable performance in 

comparison with the original PSO. 

 

   B.2. Experiments on moving peaks benchmark  

In the second experiment, In order to 

evaluate the proposed algorithm in dynamic 

environments, several experiments are 

performed on Moving Peaks Benchmark 

(MPB). In the MPB, there are some peaks in a 

multi-dimensional space, where the height, 

width, and position of each peak alter when 

the environment changes. Unless stated 

otherwise, the parameters of MPB are set to 

the values listed in table 1 [4, 11]. 
 

Table IX. Default settings of MPB 

Parameter Value 

number of peaks m 10 

Frequency of change f every 5000 evaluations 

height severity 7.0 

width severity 1.0 

peak shape Cone 

shift length s 1.0 

number of dimensions D 5 

cone height range H [30.0, 70.0] 

cone width range W [1, 12] 

cone standard height I 50.0 

Search space range A [0, 100] 

 

For the proposed method the inertia weight 

is considered as a random variable between 

0.4 and 0.9. The acceleration coefficient is set 

to 1.496180, the number of particles is 40; 

the type of neighborhood structure is Moore 

and the size of partition is 5. 

In these experiments, proposed algorithm 

so called multi swarm cellular PSO based on 

local search as CPSOCL is compared with 

Hibernating Multi Swarm Optimization as 

(HmSO) [24], Learning Automata based 

Immune Algorithm as (LAIA) [5], Cellular 

Differential Evolution as (CDE) [4], Cellular 

Particle Swarm Optimization as (CPSO) [11], 

by offline error. For each experiment, the 

average offline error and standard deviation of 

30 time-independent runs is addressed. The 

results of several dynamics are also listed in 

the table X, to XIII.  

 

 
Table X. Offline Error ± Standard Error for F=500 

M HmSO LAIA CDE CPSO CPSOL 

1 8.53±0.49 7.34±0.32 8.20±0.19 7.81±0.51 8.29±0.55 

5 7.40±0.31 7.05±0.39 6.06±0.05 6.59±0.31 6.29±0.21 

10 7.56±0.27 6.91±0.32 5.93±0.04 7.35±0.22 5.45±0.17 

20 7.81±0.20 6.95±0.38 5.60±0.03 7.79±0.27 5.47±0.19 

30 8.33±0.18 6.92±0.33 5.56±0.03 7.88±0.23 5.59±0.12 

40 8.45±0.18 6.84±0.31 5.47±0.02 7.83±0.21 5.63±0.16 

50 8.83±0.17 6.43±0.29 5.47±0.02 8.12±0.22 5.74±0.11 

100 8.85±0.16 6.58±0.26 5.29±0.02 7.90±0.24 5.45±0.07 

200 8.85±0.16 6.41±0.27 5.07±0.02 7.82±0.20 5.79±0.10 
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Table XI. Offline Error ± Standard Error for 
F=1000 

M HmSO LAIA CDE CPSO CPSOL 

1 4.46±0.26 4.96±0.32 4.98±0.35 5.86±0.42 4.74±0.32 

5 4.27±0.08 4.01±0.31 3.96±0.04 5.26±0.26 3.95±0.21 

10 4.61±0.07 3.94±0.29 3.98±0.03 5.75±0.23 3.20±0.20 

20 4.66±0.12 3.72±0.29 4.53±0.02 5.74±0.19 3.52±0.17 

30 4.83±0.09 4.03±0.31 4.77±0.02 5.84±0.16 3.96±0.12 

40 4.82±0.09 3.97±0.32 4.87±0.02 5.84±0.17 4.21±0.17 

50 4.96±0.03 4.22±0.31 4.87±0.02 5.84±0.14. 3.98±0.11. 

100 5.14±0.08 4.19±0.32 4.85±0.02 5.73±0.11 4.13±0.12 

200 5.25±0.08 4.38±0.31 4.46±0.01 5.48±0.11 4.15±0.01 

 
Table XII. Offline Error ± Standard Error for 
F=2500 

M HmSO LAIA CDE CPSO CPSOL 

1 1.75±0.10 2.48±0.15 2.38±0.78 3.78±0.25 2.31±0.21 

5 1.92±0.11 2.51±0.19 2.12±0.02 2.91±0.14 2.01±0.13 

10 2.39±0.16 2.82±0.27 2.42±0.02 3.18±0.16 1.56±0.15 

20 2.46±0.09 3.16±0.36 3.05±0.04 3.65±0.13 2.41±0.13 

30 2.57±0.05 3.14±0.33 3.29±0.03 3.90±0.11 2.78±0.10 

40 2.56±0.06 3.02±0.31 3.43±0.03 4.20±0.13 2.90±0.12 

50 2.65±0.05 3.05±0.31 3.44±0.02 4.08±0.11 3.18±0.09 

100 2.72±0.04 3.14±0.35 3.36±0.01 4.23±0.09 3.22±0.07 

200 2.81±0.04 3.08±0.32 3.13±0.01 4.09±0.10 3.09±0.12 

 
 

Table XIII. Offline Error ± Standard Error for 
F=5000 

M HmSO LAIA CDE CPSO CPSOL 

1 0.87±0.05 1.94±0.19 1.53±0.07 2.36±0.14 1.02±0.14 

5 1.18±0.04 2.09±0.18 1.50±0.04 1.94±0.16 0.99±0.15 

10 1.42±0.04 2.14±0.15 1.64±0.03 2.09±0.13 1.75±0.10 

20 1.50±0.06 2.97±0.21 2.64±0.05 2.94±0.13 1.93±0.11 

30 1.65±0.04 2.98±0.23 2.62±0.05 3.04±0.09 2.28±0.10 

40 1.65±0.05 3.07±0.29 2.76±0.05 3.16±0.11 2.62±0.09 

50 1.66±0.02 2.93±0.27 2.75±0.05 3.19±0.10 2.74±0.10 

100 1.68±0.03 3.06±0.24 2.73±0.03 3.24±0.09 2.84±0.12 

200 1.71±0.02 2.95±0.23 2.61±0.02 3.15±0.08 2.69±0.08 

 
 

According to the results of the table X to 

XIII, the proposed algorithm is relatively 

advantageous over alternative algorithms. 

V. CONCLUSIONS 

In this paper, an extension of cellular PSO 

algorithm augmented by clustering and local 

search in cellular environment is proposed. 

The inspiration for this research was to 

perform a more precise search without 

increasing the number of partitions. This is 

obtained by defining and using groups in 

each cell. The simulation results on both 

static and dynamic environments reveal an 

improvement as compared with its original 

version. 
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